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/ ABSTRACT

The technique introduced by McDaniel-Lee for the handling of the fluid/fluid inter-
'w,, face boundary under range-dependent environments is extended to handle the horizontal

fluid/elastic interface boundary. Representative wave equations of the parabolic type are
considered in both fluid and elastic media. The required interface conditions, (1) continuity
of vertical components of displacement, (2) continuity of vertical components of stress, and
(3) horizontal components of stress vanish on the interface, are satisfied with this numerical
treatment. A complete theoretical development is presented along with a test example to
demonstrate its validity.
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Im . INTRODUCTION

-. Modern computational techniques improved much of the efficiency of

range-dependent wave propagation models. The efficiency as well as

usefulness of the range-dependent model can be further enhanced if a

capability can be incorporated to handle the fluid/elastic interface. This

paper introduces a numerical treatment of the horizontal fluid/elastic

interface boundary. Since the numerical treatment introduced by

* ~ McDaniel-Lee [1] to handle the fluid/fluid interface in 1982, interest was

on the rise in searching- for efficient methods to handle the fluid/elastic

interface. Some contributions were made in the seismology science to treat

the fluid/elastic interface. R. Stephen [2] developed finite difference

4,. methods to treat this problem dealing with a hyperbolic wave equation.

.3. T. Kuo and Y. C. Teng E3] applied the finite element as well as finite

difference schemes extensively to solve the same problem as above but

dealing with an elliptic wave equation. The above techniques, though

workable, are not simple to adapt into any existing range-dependent model

without requiring excessive efforts; moreover, these techniques are by no

means simple. The numerical treatment we introduced in this paper is based

* on the standard Parabolic Equation (PE) in the fluid medium introduced by

Tappert [4] and on the coupled parabolic equations in the elastic medium

derived by McCoy [5]. The fluid/elastic interface requires three conditions

to be satisfied on the interface. i.e., (1) the continuity of vertical

components of displacement, (2) the continuity of vertical components of



stress, and (3) horizontal components of stress must vanish on the

interface. These conditions were derived to be consistent with the PE

representation in both fluid and elastic media. McDaniel-Lee's technique was

modified to treat these conditions numerically. This modification allows the

existing implicite finite difference (IFD) [6] marching scheme to be applied

systematically. A test problem with known solution, given by Ewing and

Press [7], is used to examine the validity of this development.

II. BACKGROUND SUMMARY

Since the new treatment to the fluid/elastic interface boundary is an

0extension of the McDaniel-Lee technique, it is desirable that the

McDaniel-tee's treatment to the fluid/fluid interface boundary be briefly

reviewed.

.5) We use u(r,z) to indicate the wave field, the pressure, in a 2-

dimensional medium, depth and range. Thus, u(r,z) satisfies the parabolic

wave equation

u r a a(k0 r,z)u + b(k 0r,z) uzz (2.1)

where a(kor,z) - ik0(n2 (r,z) - 1)/2

and

0.

v". b(kor,z) - i/(2ko),
0 0
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where k Is the reference wavenumber, n(r,z) stands for the index of

refraction which is defined as a ratio of the reference sound speed c and
0

the sound speed c(r,z).

At the ocean bottom, the change of sound speed and density form an

interface (see Figure 1). From one medium

'II. I

Pr €1

Figure 1: Interface Boundary

to the next, at each interface, the interface conditions must be satisfied,

i.e., the pressure and normal components of particle velocity are continuous

at the interface.

The standard PE, Eq. (2.1), does not contain the density. In order to

satisfy the interface conditions, McDaniel-Lee developed a special equation

* with density variations to represent the wave field on the interface. It

turned out that this special equation is again a PE.
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In developing this interface PE, McDaniel-Lee applied the Taylor

series expansion to the points near the interface and then match the fields

on the interface which is denoted by zB* A clear configuration is given

in Figure 2.

WSS
-" 2.

Figure 2: The Interface Between Two Media

In carrying out the matching process, let us describe the interface

mathematically below.
-p

The continuity of pressure requires that

u(r,zB) - u2(r,z (2.2)

,0 the continuity of normal component of particle velocity requires thatN).
*au I au 2

a2 8z "I (2.3), ZB zB

Note that the interface is assumed horizontal.
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In every medium the field u(rz) satisfies the PE, (2.1). Therefore,

in medium 1, ul (r,z) satisfies

(ul)r = a1 (k0 r,z) u1 + b1(k0 rz) (ul)zz ( (2.4)

where a1(k0,rz) - iko(n2(r,z) - 1)/2 "(2.5)

and

b1(ko,r,z) = t/(2k ). (2.6)

Using the first three terms of the Taylor expansion for (ul)mI

upon (u1)m and solve for (u1)zz then substitute them into Eq.

(2.4), we find

au_ h (U alUl 1 u (U (2.7)

az 2b (U)r 2b I  1 - (u -1 )

where h = Az.

Similarly, in medium 2 use a three-term Taylor expansion for

.. 2)m+l upon (u2 )m and follow the same procedures as carried out in

medium 1, we find

au2 __h h1

a"2 ( U )(+ h a U + 1 ( ( u . u ) ( 2 .8 )

5



The first interface condition (2.2) allows one to write u - u2 - u on

the interface. Then, multiply both sides of (2.7) by P2 and multiply both

sides of (2.8) by p,; then the second interface condition (2.3) allows the

above results to be equal. After simplification, the McDaniel-Lee

horizontal interface wave field is obtained between two fluid media to be

r + 2 2 2 U + hj U2)mul  (uu)m)
-. 2 p2 2 p Um )

(2.9)

Note that the density is assumed to remain constant in each medium.

III. FIELD REPRESENTATIONS IN FLUID/ELASTIC MEDIUM

Dealing with the fluid/elastic interface, two media are involved,

i.e., a fluid medium and an elastic medium. The field representation in the

fluid medium by the parabolic approximation is a scalar PE while in the

elastic medium the representative wave equation is a vector PE. A standard

derivation of the scalar PE in fluid medium can be found in references 4

[Tappert] and 8 [Lee-Siegmann]. The vector PE has been derived by a few

authors, though their derivations, and method of derivation differ from, one

another. These derivations are

6
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(1) Lander and Claerbout's equation [9], derived using dilatation

and rotation,

(2) Hudson's equation [10], derived using displacement, and

(3) McCoy's equation [5], derfved using dilational and shear

potentials.

In this paper we use potential representation to deal with the

fluid/elastic interface, thus, it is appropriate that we adopt the vector PE

developed by McCoy.

In the fluid medium the parabolic wave equation was expressed in the

2-dimensional cylindrical coordinates where we use *1(r,z) to indicate the

potential; in the elastic medium we use +2(r,z) and 42 (r,z) to represent

the potentials there. In the above notation, the subscript 01" is used to

indicate the fluid medium, and the subscript "2" to indicate the elastic

medium. We use 01 to indicate the displacement in the fluid medium and

0 to indicate the displacement in the elastic medium. Their
.5(, 2

relationships with the potential are given by

D1 (ulw 1 ) = grad 1(r,z), (3.1)

0 2 (u2,w2) = grad 2 (r,z) + rot 2(r,z). (3.2)

Equivalently we can write the above as

. "v i 1 u alea (3.3)

1 ar

". " ,,8w= z

V7



,.2 arh 8z 2

(3.4)w 912 84,2 1
L:: w2 aT + Tr +  2

In the fluid medium, the potential +1 (r,z) satisfies the Helmholtz

equation below.

2 2
V +,(r,z) + ki (r,z)+ l = 0. (3.5)

Following the derivation of the PE in the fluid medium by Lee-Siegmann,

the wave field *l(r,z) obeys the following decomposition

=(rz) A (rz) H l)(k r) - A,(rz) 2 (3.6)a

where k0 is the reference wavenumber and H, 0(k 0 r) is the zeroth

order Hankel function of the first kind. In the foregoing development, all

Hankel functions, in their asymptotic expansion form, have a common

- I-mutiliatv contan ; - 4

multlicative constant e 4 ; this can be ignored for simple

calculation. This treatment allows Eq. (3.6)a to be written as

) -o r k r

O(r,z) A(r,z) 1 7  
0  (3.6)b

0.5
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Assuming that A1(r,z) is weakly dependent in range, the

representative PE in the fluid medium is obtained, by the parabolic

approximation

,

aA1  a2A l
-= alA + b (3.7)
ar 1 1 1 az 2

1 2 2
where a, = " (k'1 (rz) k 0) (3.8)

0

and

b (3.9)
1 = 2k

0

In an inhomogeneous elastic medium, * 2(r,z) and 42(r,z) no longer

satisfy the two independent Helmholtz equations because of the coupling

effects. Following the derivation of McCoy, the propagation of

time-harmonic stress waves through an inhomogeneous, linear elastic solid

medium which is locally isotropic, is governed by the equation

- - 2 2D2 +  
-2

) v V D2 
+ P2 V  D2 + Pw F2  = 0 (3.10)

where X 2' $2 are Lame parameters and P2 is the density such that

X= X2 [1 + C r(r,z)], (3.11)

V - [1 + c (r,z)], (3.12)

-2  = [ (1 + c (r,z)], (3.13)

9



and

%2a.'

F2  V [X2c (V . 2 )e + P2 cl(VD2 + D2V)] + p2 Cw 22 (3.14)

where e is a unit vector.

In the above equation, the upper bar indicates the spatial average and

c with a subscript indicates the perturbation with respect to that subscript.

Define

- 2
W2 P2 W

k. D _  2 - , (3.15)

cD + 2,

and

- 2'*2 P W
W (3.16)

S -2 -

assuming that

% i kDr
'2(r,z) A2(r,z) H 0l(k D r) - A2(r,z) e 3.17)

and

(r B2(rz) (k r) 8 (r) I e (3.18)

.10
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With the assumptions above, A2(r,z) and B2(r,z) satisfy the

following PE's, respectively:

aA2  a2A aB2
2 2 '2

ar a 2 A2 + b2 82 
+ c2 -

(3.19)

and

iiaB2 , a2B2  ' aA2

2 a B + 2 -8A (3.20)
ar a a2 B22 + b2 az2

- where c2 and c2 are coupling coefficients whose definitions along

with other symbols are given below:

= ,I k2( -D2]

a2  k ,0 (rz) - , (3.21)

b (3.22)b2 -

2k
,p1

1- [iAk -
(3.23)

12 2 -2]

a 2 - [k (r,z) k S], (3.24)
2 -2k

* s

b (3.25)b2  2k 2 s

2ks

2 c ji kCIjp* (3.26)

11
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=i 1 I(n+l)&r i8k x dx

C Up = r Ar ip c (x,z) e (3.27)
[I nAr

and

=p 2 (3.28)

IV. FLUID/ELASTIC INTERFACE CONDITIONS

In this section, we derive the fluid/elastic interface conditions

associated with the representative PE's. Furthermore, from these interface

conditions, a system of three equations which relate the fluid potential

A 1 to the elastic potentials A2 and B2 and their derivatives on the

fluid/elastic interface will be derived.

We begin by discussing the fluid/elastic interface conditions using

the expression of displacement. These conditions, in cylindrical

coordinates, are

1. Continuity of vertical components of displacement:

w =w (4.1)1 2*

2. Continuity of vertical components of stress:

01.

"' 12

"S.



Iuu1 aa(u 2  aw 2 aw7au r u+ -= 'X2 (-8r- + r u2 + az "2 2 (4.2)
1 (-r+1 aT 2 / 8z,

3. The horizontal components of stress must vanish on the interface:

(',u2 +aw2) 0
u2 \ j -1 o. ,(4.3)

In terms of potentials, the equivalent interface conditions to (4.1),

(4.2), and (4.3) are

1. Continuity of vertical components of displacement:

a* 1 8 2 + 8"2 "(4.4)
az 8 = ar ar

" '1 2. Continuity of vertical components of stress:

/2+1 1 a 22 ! 22 2 2 12)a: z' -- * + 2 112 2- - - + --a + r,8z/
a , 1+ = X2 _- 

+ "8r +z 2,.8z ,.
a2 / 2 a a ra

(4.5)

3. The horizontal component of stress must vanish on the interface:

( 2 2 40 2 a

'2 84 +!2+2 + I a 72 1

'J araz z 2  r ar 2 -0. (4.6)

a,,"r-,

. Making use of Eq. (3.6)a for +l, (3.17) for +2' (3.18) for 42, and the

PE's (3.7). (3.19), and (3.20). the corresponding interface conditions for

the PE's are obtained below.

1
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1. Continuity of vertical components of displacement:
.1

1- _ aL e +  B2  e (4.7)

az k8ks zar s

- 2. Continuity of vertical components of stress:

-P'2 A I 2A2 8A2 A 2) + 2 A2 k 0 eiA~r

. 8A 2A 2  R D L - D a 2  8 eD r

(4.8)

2

'22 8 2 882!- k0 i

(u2 a s kz4

3. The horizontal components of stress must vanish on the interface:

2 21i 2 -- 2ik (ik )2B (4.9)
* z1r D z az2 s 8r s 2k

E- \~az " - k

where A0 =k - k, k - k.
D"0 o s 0

From this point on, since we deal with the potentials and their partial

derivatives on the interface boundary and at the present range level, for

economy in writing we drop the superscript n and the subscript J, e.g., A2
means (A)n unless otherwise specified.

'21

Following McDaniel-Lee's technique in fluid medium, we use the Taylor

41

" a~2A

- - .,expansion for (AI)j_1 upon (AI) J , solve for az and substituting into

WI,

%e..



Eq. (3.7), we find

8A1 h A1 h 1
az- 2b1  ar - 1  alA1  + h (A1  - (A1)J _I) (4.13)

where h, is defined as the depth increment Az. Later we will use k to

represent the range increment Ar.

If we substitute (4.13) into (4.7), we obtain

aA 28A
(A, hA~j, 1O hz As-~ +~ a a

2b 1  ar~~l A A)~ -K 2b K1- 1 1 E5 21 0

(4.14)

where

k A~r
K 0 e (4.15)

. o-and

~S~k ia rj s k sK -se .(4.16)

%4
Using the finite difference for the partial derivatives in (4.14), we obtain

h 1 Al - ) !- a1A1 + h (A1 - (A1) 1 ) K h (A 2 )+ 1 - A
2b1k 1 2b1n Dh 2 ll 2

B+ [B - B] + is B (4.17)

0. s B"

V.. 15

e o 0



A simplification of (4.17) gives

P An+ An1ln+
11 13 + A 1 + P1 3  n+l RHS 1 (4.18)

where

- h 1 (4.19)
11 = 2b1 k

P12 = 0, (4.20)

P13 = -Ks/k, (4.21)

and

RHS - (_ + a,) A _ (A1 )J_1 + ((A A

+K s (tks - ) B2. (4.22)

The next two equations to be derived into the system are based on Eqs.

(4.8) and (4.9). In those two equations, two terms are involved, namely,

a 2 2
a2A 2  a2B2

araz and ara-z . We first try to develop explicit expressions for these two

partial derivatives.

Applying the finite difference to the partial derivatives in Eq. (3.20)

gives

(28jl (B2 ) +k a2 (B)+1 k b

(B )nl J+ +ka2 2jl \z/ +

I%
,1%



8A

2~~ n+

=/ (1,f8A ga 2

2+ak2) a 1 B 8  
2  j +i 2 \2 z j+

22 h + k a 2) (B2) + I + k b/ z2 j+ I

1 k a ( + k b8- )(B2 . 2) + 1

( \

;- ,; .,. ' ,/2B2
(A.. 2= +2 k ( A -)2))j+ b2 (- z2)j+I 2 'az 'j+

n+1",2)+1

: /.:? + k(1 ''J+l k a B)+ -(a B2) -

(A 2{ ~ + k 2 ' \v .. 2a '

..... 2 = j A A e (e + kb - 2

- 2 j - B . (4.24)

:I Applying the finite difference to the partial derivatives in Eq.

(3.19), we obtain

(A2 ' I = (A2)J+ + k a2A)~ + k b + + k c2 2-/+ (4.25)

417F. -W

= I k a 2 ( 2 ) 1 I + k b 2  , 2 .+ 1 k 2 a -' - j 1 + I

ar h "r((A)~,2
@" a2A2=

'-Z a/= 1 A2)17-A



f" - n.l

2 2 + 2 + (A) 1  A

,.-. 1 -2' 1 - (A2)+ A)

".-" h k 2 k

-Ik' a ( 2A2)+ + k b 2 A2 +kcZA 4.6

k )~ a,2j+ 2 c a-)j +1  (.6

Eq. (4.8) can be written as

2 2 AA]2
2 2 a- 2  2  K

2A1 2w2  a2A2 aA 2 2

-I- A 1 2 + 2 2k - K (4.21)kD  azs
%L

+ 2k s 2 2 3z

[2 az 2 -2 -B i - (4.28)

718
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* ,S .."

Using the finite difference for all partial derivatives in (4.28), we

obtain

r2
2p,. A 1  [f ((A2 ) 2  (A + A2  + 'k 2ik0 I (A2 n A2

h +22SI 2

. 2

k h2A K + 2 a 2 ( L + a; (B
+k A2  KD 2+2 2 D 2 B 2  j+A

,e
+kb;12 B2+2- 2(B 25' B2 c

B ) B 21+ i k ( (B2  - Bl K. (4.29)2, k h 2J+l 2, S

A simplification of (4.29) gives

n+l An+l nl
P21 A1  + p2 2 A2 + p2 3 B2  = RHS2 (4.30)

where

P21 w 0, (4.31)

= 2 21k 0 I K0, (4.32)

*, 2

p23  -2 P2- Ks (4.33)-2 k s2 hk

and

RHS2 = -p 2 A, h2  E 2 (A2 )J+ 2

19



4

2 2K 2Kk c2p w D +~ s 2 (A2)+

[ h  2 +  ' tO[ + 2 J DA

2

+ -2 1 k R A
D h 2  2Dk 2 D 0 2

2

- 2 h k 2; KS (B

S ,
. ~- 2 e2 -2---ks k a2 - 2kb 2 +1k 5 ~s  Ks (B2).1l

k 2 , h )+
s

2
- 2  P -k a- 2 k b 2 1A 1 + (4.34)

3 E 2 (kh) ' KB 2

Next, substitute (4.26) into (4.9), we obtain

2K a (A) k b a A~ +kc 2 An+lhk- 2 2 j+1 2 8-jj+1 2 (az)i +1 k~2 A)

!A - az - 2 -) 2B ( 4.35)

21k0 - 21k - - (1k B KD(435
D az a2 s ar s DS

_kD SD50where K DS w4 '- e ,and (4.36)

Aso as - a

-,h,
.

.1,



Using the finite difference for all partial derivatives in (4.35), we

obtain

2 k L -2(A) A + k 22-TkIka2 A2 j~ [2 2 A2J+2 2j Jel+2 (2jl 2B]hk j~h

- A2) n+l - A + 21kD (A2 j+I - A2)

21 21 Dh 2)
._1 21 5  rn+l

--[(B2  -2(B) + B -1 1 -Bnl B]
h2 2)J+2 - 2 j+l B2  ks  u2  21

-(iiS) 2 B2) KOS. (4.37)

A simplification of (4.37) gives

* An~l nei _n+l
' A 1 + 3 A + p B2  = RHS3 (4.38).].P31 1 P32 -2 +P33 l2

where

P31 - 0, (4.39)

P32 = -2/(hk), (4.40)

P33 = 21ks (1/k) KOS, (4.41)

and

~2
RHS3 h3 b2 (A2)J+2

h

~ka 2  2k 2 h~j + 21 R h %~

+ - k b2  + 21k0 +)A I-KO

21
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- {- + 2 KDS (B2)J+1

+ -+ + 21k [ - i2) KOS + k c 2 . (4.42)

.k )

Equations (4.18), (4.30), and (4.38) constitute a system of 3 equations
n+l An+2 .n 1

among which unknowns A'I A 2 , and B2  are to be solved.

n+
From this system we see that AI only appears in Eq. (4.18).

Actually, we need only to solve a system of 2 equations, i.e., Eqs. (4.30)

and (4.38). This system can be written as

P22  P23  An+l RHS2

1.. 1 •(4.43)

-P32 P33  Bn+l RHS3

After system (4.43) is solved, we substitute 2 into Eq. (4.18)
.n+l

to obtain n by means of

n+l n+lA1  - (RHS 1 - p13  B2 )/ p11 . (4.44)

To examine the existence and uniqueness of the solution of system

(4.43), we evaluate the determinent of (4.43),

determinant of (4.43) =(221k 0  (21k 1 K0

22



k k 22
= 4X2  k2 K - 4 1 Ks 0

mI s

because KOs is complex while other quantities are real; therefore, the

determinent is not singular and the solution exists and is unique.

V. A NEW COMPUTATIONAL APPROACH

Following McDaniel-Lee [1], a uniform partition in the z-direction is

assumed. The h = Az is used for the depth increment and the integer index j

is the interface boundary. As before, the superscript indicates the range

level, and the subscript indicates the depth level. It is also understood
-.

that if both the superscript and the subscript are dropped, it denotes the

field at (nAr, jAz), i.e., A - A.n

Our approach can be described by the following statement:

Solving the representative parabolic wave equations In the

different media by means of an implicit finite difference (IFO)

marching scheme, applying the field values on the interface as

0 boundary information from fluid and elastic media.

We proceed to discuss the meaning of the above statement. Solving the

representative parabolic wave equation using an implicit finite difference

scheme in a marching process requires the initial field values at range r°

23



plus the surface and bottom boundary information. The surface boundary
v n

point at the present level is denoted by (A1)0 and at the advanced

level by (A1 )n+l the bottom boundary point at the present level is-0

n nl
denoted by (A1 )j and at the advanced level by (A1)n . The IFD scheme

predicts the wave field at the advanced level, r + ar, regardless whether

the medium is fluid or elastic. If the medium is fluid, there is only one

PE to solve; if the medium is elastic, there is a system of 2 PE's to solve,

in this case the field is a vector containing components A2 and B2 , each

component is a subvector. Dealing with the solution of the entire problem,

the surface remains unchanged, but an interface boundary comes into

existence. This interface boundary separates a fluid medium and an elastic

medium. One crosses the interface boundary, the density and the sound

speeds change. In the elastic medium two sound speeds occur, the speed of

P-wave cD and the speed of S-wave cS. Initial field values at r° are

used along with surface points (Al)n, (A,)n+1 and interface boundary points0Al0

(AI) , (Al)j to predict the wave field (ro + ar) in the fluid medium.
n { n~l n~l

The (A2)J , 2 (Bl2) are used as surface points along with

initial field values at the same range level. Beyond interface boundary,

n 2,n+l n )n+lthe boundary points (A2)bottom, (A )bottom' (B2)bottom' (B2 bottom

are generated artificially. This setup allows the same IFD procedure to

solve a system of PE's in the elastic medium in the same manner as in the

fluid medium. The key treatment is to determine the interface boundary

values (AI) J O (A2) Y and (B2)j which are related by the system

24
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(4.43) and Eq. (4.44). With these interface boundary values, the IFD can

march in range to predict the wave field in the fluid at the next range.

This is where the McDaniel-Lee interface treatment is extended to handle the

fluid/elastic horizontal interface. Note that (A 1).i is used as a bottom

boundary point to solve the PE in the fluid medium while (A2) and

* . (B )j are used as two "surface" points to solve the system of two

parabolic equations in the elastic medium.

For better understanding, the diagram below explains our description and

will help clear up our early statements.
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Let (A (A) 1  be 2 vectors associated with range levels n

and n+l respectively. These 2 vectors contain only the nonzero components

at the interface boundaries, i.e., (A )n and (A )+

Then the matrix representation for the fluid/elastic interface problem

can be expressed by

nbl -,nln ~
Fluid: A = 0 n A 1 + ( 1) .1 + ( A ) +I

------------------------------------------------------------------------ interface
.1 % " E ' E E ' / j

Elastic: 2 =. .
29 1 1

where (A2j and B2)J are 2 vectors having the same structure as

(A except the nonzero elements are the first components and 0, E, F

are tri-diagonal matrices, and El, F1 are sparse matrices whose non-zero

elements appear on the diagonal and lower diagonal.

Note that the points which influence the fluid/elastic interface

boundary are (A ) j (A2)., and (B2) j at all range levels. It is

very clear that their relationships are defined by the system (4.43) and the

Eq. (4.44). Once these boundary values are obtained, the IFD scheme can

march forward in range.

26.
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VI. A NUMERICAL EXAMPLE

This section examines the validity of our approach and an example whose

solutions [6] are known is used as a demonstration.

First of all, in the case where the elastic waves are absent which

implies that P2is zero. Under such an environment only one PE is needed

to represent the wave propagation in the fluid. Thus, the equation (2.1) is

the representative equation. Furthermore, Eq. (4.6) becomes zero

identically on both sides. Eq. (4.4) reduces to

8A aA
1 2(61

8z 8z

and Eq. (4.5) reduces to

P A1 =pA 2  (6.2)

Eqs. (6.1) and (6.2) are equivalent interface conditions to (2.2) and (2.3)

in the fluid medium. Then all Taylor expansions can be applied following

the McDaniel-Lee technique.
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Next we use an example discussed by Ewing et al [7] to computationally

demonstrate the validity. This example neglects the branch line integrals

and is feasible for large values of range; thus, it is very suitable for our

PE's (far-field). The solutions +1 *2' 42 are given for Helmholtz

equations. For consistency we derive the corresponding solutions to the PE.

"- The exact mathematical expressions for +1l, 2' and *2 are

• = -i" ¢ I 2. ~~I I ( w t -k n r - 4I

1=2v - 2r e nl(k) sin( gnd) sin( nz)

n

0 < z < H = z. d = source depth (6.3)

I.,-. .k r-1

'-"0.¢2 
= H- 'r e 02(kn)sin( tnd)e - z H

z > H (6.4)

i(wt-knr-4) - ;(z-H)Se n 4 2 (kn)sn nd)e

z>H (6 .5)

8'
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where

J.

4- Pi C nn
4 - k nH

P2 2 (6.6)

n' V-- . cos(g H)

2n

- C (2 -- ) k H"-/,./" B 2 2

02(k n ) 2  2 - 2 (6.7)

2 2
PiC

,,1

2 n

(k = - 2 g (6.8)

11 4 sin( H) C1 C2/a2
2

p2 82 4C 2  1C 2  
C 2 2~-

21c 1--2 ...

v 1  C 2

knH 2 c(

(c2/v 1  - 1) n

".1-c2/ 2 2 1-c 2/ 2
2

4 + +2 c-. --

f7 2 1 -C 2 / 2  2 /B-2
'm2 2

2
-~ ~ C

- 2(2 - 2 ) Cos( 6n H) , (6.9)

T32
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a nd g n = k n c ( 6 .10 )

v I

* 1

n 1. 112n  n
-2

A = n ; - C 2/B2
2  (6.12)

where n is a subscript which indicates that the quantity is to be evaluated

, at k =k n , where k n are the roots of

,1 _0 4 tan( H) - 4k2  4,-(2k 2 _ 2 0 (6.13)
P2 02 4  B22

For computational simplicity, we use one mode, i.e., n - 1. After

separating the H (k~r) (k. W k , ks , or k and the

time-harmonic, the corresponding PE's A1, A2, and B2 to Eqs. (6.3),

-- (6.4), and (6.5) become

=5 - k )s n

i(kn-ko)r•,A 1 -= e l(kl) sin( d) sin( nz) , (6.14)

2,kD e n 0-n(z-H)

A - Dre 0 2 (kl) sin( nd) e (6.15)
22

=(kn-ks)r - ;(z-H)

2 1k e 21 sin( n (6.16)

0.0

A.-. 
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and

has the same definition as (6.9) but has the subscript n - 1.

Next select the compressional wave velocity v1 in a fluid of 1500 m/s
2

with compressibility Xl V2 and a water density of p, = 1.0. c is

the phase velocity such that

2wf
f - c kn/2 21f.k . c

We follow the case I of Press-Ewing's to select a20 820 and v1 such

that

2 >3 2 > c>v 1  (6.17)

p.°

We make the following choices:

f =68.03 Hz

H = z - lOOm

d = zs = 25m

L v1 = 1500m/s
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8 2 = 1530.0 m/s

2 m 1725.0 m/s
%'

o  
1  1507.5 m/s

k 0.283546
7"m I

I

1 (1500)2

. 2.5 *(1725.0) - 2,2.5,11530.0)
2

22
S.-

V12 = 2.5*(1530.0)

P1 = 1.0 g/cm 3

= 1.97 g/cm 3

k - 0.284963
0

k - 0.247794
S 0

"7

k - 0.279376

,.3
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(Anlis calculated by means of formula (4.44) where RHSl is defined by

formula (4.22), p 13 is defined by formula (4.21), p11 is defined by formula

(4.19), and B2n~ is calculated by formula (6.16).

As illustrated in the previous section, our: main effort is to determine

(AJ) n+l and use it as a fluid/elastic boundary information. ( )~

is obtained in such a way that it is related to the information of elastic

potentials (A2 +1 n B2 n+l on the fluid/elastic interface.

System (4.43) was developed to relate these points. In this test example, we use

a- an accurate (A2  and (B2) at every range from a known solution as the
2 -

accurate boundary interface values. These accurate values are applied at every

step when solving system (4.43). Results are tabulated describing the comparison

of computed field values against the known solution in dB. Accuracy was carried

up to 2 significant digits using the VAX 11/780 computer.

:Wa, 
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TABLE OF RESULTS

Range (in) 1500 2000

Depth (in)

30 (-0.366E-02,-O.590E-02) (-O.669E-02,-O.198E-02) Computed
-,(-O.366E-02,-O.590E-02) (-O.662E-02,-O.209E-02) Exact

60 (0.480E-02 ,-0. 785E-02) (-0.874E-02 ,-0. 270E-02)
(0.482E-02,-0.777E-02) (-O.872E-02,-O.276E-02)

90 (-0.276E-02,-0C.428E-02) (-0.464E-02,-0.l 52E-02)
V.(-0.269E-02,-0.433E-02) (-0.487E-02,-0.l 54E-02)

*From this selected test example, it is clearly seen that the numerical

results, produced by this model, agree satisfactorily with the exact

4. solution. The results not only demonstrate the validity of this model, but

also show the correct computational procedure following the IFO procedure.

* This also serves as an early indication that this model can be readily

* incorporated into the IFO code.

VII. CONCLUSIONS

A mathematical model has been developed by means of the parabolic

approximation method for handling the fluid/elastic interface. The complete

mathematical development plus the numerical example proved the validity of
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the model. As it stands now, even though this model is accurate, it is

N%% limited to narrow angle propagation only. However, an important feature of

this model is that it can handle a range-dependent index of refraction in

the elastic medium. Moreover, another attractive feature is that this model

* is readily adaptable into the existing IFO code without requiring excessive

effort.
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ADDENDUM

SUBROUTINE UFIELD
C
C USER STARTING FIELD
C USER WRITES THIS SUBROUTINE IF GAUSSIAN FIELD NOT DESIRED
C UFIELD IS CALLED IF INPUT PARAMETER 1SF IS NOT ZERO

-~ C

C UFIELD SUBROUTINE SUPPLIES:
*C U - COMPLEX STARTING FIELD

C
PARAMETER MXLYR=101,MXN=10000,M4XSVP=101,MXTRK=1O1,NIU=l,

C NOU=2,NPU=6
COMPLEX ACOFX,ACOFY, BCOF, BOTX,BOTY,BTA,HNK,HNKL,SURX,SURY,TEMP,

C U,X,Y
C

REAL*4 KO, Ki, KS, KD, MU2, LAMNDA2
COMPLEX PHI1(MXN), PH120MXN), PS12(MXN), CARG, Bi, Al,

C T12, T21, T22, T32, T33, CHI, AlJM,
C KDD, KSS, CARH, CARI
COMMON /USTFLD/ KO, Ki, KS, KD, SIGMAl, CPHIl, CPH12, CPS12,

C Bi, DELTAS, DELTAD, AlJM
EQUIVALENCE (H, ZLYR(l)), (D, ZS), (Z, ZI)

C
COMMON /IFDCOM/ACOFX,ACOFY,ALPHA,BCOF,BETA(MXLYR) ,BOTX,BOTY,

C BTA(MXN),CO,CSVP(MXSVP),DR,DR1,DZ,FRQ,IHN(,ISF,ITYPEB,
C ITYPES,IXSVP(MXLYR),KSVP,N,N1,NLYR,NSVP,NWSVP,R12(MXN),RA,

*C RHO(MXLYR),RSVP,SURX,SURY,THETA,TRACK(MXTRK,2),U(M4XN),
C X(MXN),XKO,Y(MXN),ZA,ZLYR(MXLYR),ZP,ZS,ZSVP(MXSVP)

* DATA PI/3.141592654/,DEG/57.29578/
C
C PUT THESE VALUES IN TEMPORARILY
C

DATA C/1507.5/, Vl/1500.0/, ALPHA2/1725.00/, BETA2/1530.00/,

C E110,R0/.7,IDO
C

SEC(A.NG) = 1.0 / COS(ANG)
C
C STARTING FIELD -EWING & PRESS
C

AR = R
IF (IND .NE. 0) AR =RA -DR

*OMEGA =2.0*PI * FRQ
7KO =OMEGA/CO

Ki = OMEGA/C
KS = OMEGA/ BETA2
KD = OMEGA /ALPHA2

C WRITE (NPU, 1) 'KO: ',KO,'K1: ',K1,'KS: ',KS,'KD: ',KD
* 1 FORMAT (2X,A4 ,E1 2.6, 3X,A4 ,El2.6, 3X,A4,E1 2.6, 3X,A4,El 2.6)

CARG = CMPLX(0.0, (Ki - KO) * AR)
CAH- CMPLX(0.0, (Ki - KD) * AR)

CARI = CMPLX(0.0, (i- KS)*AR
Bi = CMPLX(0.0, 1.0 / (2.0 * KO))

C WRITE (NPU, 2) 'CARG: ',CARG,'B1: ',Bl
A 2 FORMAT (2X,A6, '(' ,E12.6,2X,E12.6, ')' ,5X,A4, '(' ,E12.6,2X,E12.6,

F
DELTAS - (KS - KO) * AR
DELTAD -(KD - KO) * AR
DELTADS = (KD -KS) * AR

C WRITE (NPU, 3) 'DELTAS: ',DELTAS,'DELTAD: ',DELTAD,'DELTADS: '

..0i

ilkn -'z



C W DELTADS
3 FORMAT (2X,A8,E12.6, 3X,A8,El2.6, 3X,A9,E12.6)

MU2 = RHO2 / BETA2 ** 2
LAMNDA2 = RHO2 * (ALPHA2 **2 - 2.0 *'BETA2 ** 2)

C WRITE (NPU, 4) 'MU2: ',MU2,'LAMNDA2: ',LAMNDA2
4 FORMAT (2X,A5,El2.6,3X,A9,El2.6)
C

ARGI = C ** 2 / Vl * 2 - 1.0
ARG2 = 1.0 - C * 2 /ALPHA2 ** 2
ARG3 = 1.0 - C **2 /BETA2 **2

ARG4 = 2.0 - C **2 /BETA2 **2

C WRITE (NPU,5) 'ARG1: ',ARG1,'ARG2: ',ARG2,'ARG3: ',ARG3,
C W 'ARG4: ,ARG4
5 FORMAT (2XA6,El2.6,3X,A6,E12.6,3X,A6,El2.6, 3X,A6,E12.6)
C

SIGMAl = Ri * SQRT (ARG1)
ETAl = l SQRT (ARG2)
ZETA1 Kli SQRT (ARG3)

C WRITE (NPU,6) SIGMAl: ',SIGMA1,'ETAl: ',ETAl,'ZETAl: ',ZETA1
6 FORMAT (2X,A8,El2.6,3X,A6,E1 2.6,3X,A7,El2.6)
C

BRACE =(RHo1 / RH02) *(C **4 / BETA2 ** 4)
*B * (SIN (SIGMAI H) I(SQRT (ARG1) * SQRT (ARG2))

B * (1.0 + ARG2 /ARGi) -((Ki * H * SQRT (ARG2)) / ARG1
B * SEC (SIGMAl *H))M 4.0 * (SQRT (ARG3) / SQRT (ARG2)
B + SQRT (ARG2) /SQRT (ARG3) + 2.0 * SQRT (ARG2)
B * SQRT (ARG3) -2.0 *ARG4) * COS (SIGM.Al * H)

C
CPHIl -((RHOl / RH02) * (C **4 /BETA2 ** 4) *(ETAl /SIGM.Al)

C * R * H) / (1.0 * BRACE *COS(SIGMA1 H))
CPH12 =-((RHOl / RH02) * (C ** 2 /BETA2 **2) * ARG4 KlR * H)

C /(sQRT(ARG1) * BRACE)
CPS12 =-((RHOl / RH02) * (C ** 2 /BETA2 **2) * (ETAl ISIGMAM)

C C /BRACE
C WRITE (NPU,7) 'BRACE: ',BRACE,'CPHI1: ',CPHIi

7 FORMAT (2X,A7,E12.6,5X,A7,E12.6)
f''C

DO 10 1=1,N

ZI=I*DZ
IF ((Z .GE. 0.0) .OR. (Z .LE. H)) THEN

PHI1(I) = ((2.0 * PI) /H) *CEXP(CARG) *CPHI1

U * SIN(SIGMAl D) *SIN(SIGMA1 Z)
*U * CSQRT(CMPLX(KO / R, 0.0))

END IF
*IF (Z .GE. H) THEN

PHI2(I) = ((2.0 * pi) / H) *CEXP(CARH) *CPH12

U *SIN(SIGMA1 * D) *EXP(-ETAl (Z - H))
0. * CSQRT(CMPLX(KD / R, 0.0))

PS12(I) - (2.0 * PI) * CEXP(CARI) * CPS12
U *CMPLX(0.0.Kl)

-~U * SIN(SIGMAl * D) *EXP(-ZETA1 * (Z - H))
U * CSQRT(CMPLX(KS I R, 0.0))

.2 END IF
U(I) - PHI1(I)

10 CONTINUE
'N'PHI2(N.1) =((2.0*PI)/H)*CEXP(CARH)*CPHI2

U *SIN(SIGMA1*D)*EXP(-.ETA1*((N+1)*DZ-H))
U *CSQRT(CMPLX(KD/K1,0.0))



V.

PSI2(N+I) = (2.0*PI)*CEXP(CARI)*CPSI2*CMPLX(0.0,-KI)
U *SIN(SIGMA1*D)*EXP(-ZETAI*((N+I)*DZ-H))
U *CSQRT(CMPLX(KS/Kl,0.0))
KDD = CSQRT(CMPLX(K0 / KD, 0.0)) * CEXP(CMPLX(0.0, DELTAD))
KSS = CSQRT(CMPLX(KO / KS, 0.0)) * CEXP(CMPLX(0.0, DELTAS))
T33 = CMPLX(0.0, DR / (KO * DZ ** 2))

C WRITE (NPU, 8) 'T33: ',T33
8 FORMAT (2X,A5,'(',EI2.6,2X,E12.6,')')

T32 = (CMPLX(l.0, 0.0) - T33) * PHI1(N)
T32 = T32 + T33 * PHI1(N-1)

C WRITE (NPU, 8) 'T32: ',T32
T12 = CMPLX(0.0, KS)
T12 = KSS * T33 * DZ * PS12(N) * (T12 - CMPLX(I.0 / DR, 0.0))

C WRITE (NPU, 8) 'T12: ',T12
CHI = T12 - T32 / T33

C WRITE (NPU, 8) 'CHI: ',CHI
T21 = KSS * T33 * CEXP(CMPLX(0.0, (KI - KS) * DR))

T * PSI2(N) * DZ / DR
IF (IND .EQ. 0) T21 = KSS * T33 * PSI2(N) * DZ / DR

C WRITE (NPU, 8) 'T21: ',T21
T22 = KDD * T33 * (PH12(N+l) - PHI2(N))

C WRITE (NPU, 8) 'T22: ',T22
9 FORMAT (2X,A6,'(',E12.6,2X,E12.6,')')

Al = T32 + T22 + T21 + T12
IF (IND .GT. 0) GO TO 15
U(N) = Al
IND = 1
RETURN

15 AIJM = Al
RETURN
END

S
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-. SUBROUTINE BCON
C

C USER PREPARED BOTTOM CONDITION SUBROUTINE
C BCON IS CALLED IF INPUT PARAMETER ITYPEB =1

*- C SEE MAIN PROGRAM FOR DEFINITIONS
C
C SUBROUTINE RETURNS:
C BOTY,BOTX
C

*PARAMETER MXLYR=101,MXN=10000,M4XSVP=101,MXTRK=101,NIU=l,
C NOU=2,NPU=6
COMPLEX ACOFX,ACOFY,BCOF,BOTX, BOTY, BTA, HNK, HNKL, SURX, SURY,TEMP,

*C UXY
-. REAL*4 KO, Kl, KS, KD
* COMPLEX CARG, Bi, CR5, CKD, P11, P13, AWJN, AlJM, A2JN, A2JPlN,

C B2JN, B2JNP1, RHS1, CARH, CARI
COMMON /USTFLD/ K0, Ri, KS, KD, SIGMA1, CPHI1, CPH12, CPS12, Bi,

C DELTAS, DELTAD, AlJM
COMMON /1 FDCOM/ACOFX,ACOFY,ALPHA, BCOF, BETA(MXLYR) ,BOTX, BOTY,

C BTA(M4XN),CO,CSVP(M4XSVP),DR,DR1,DZ,FRQ,IHNK,ISF,ITYPEB,
C ITYPES,IXSVP(MXLYR),KSVP,N,N1,NLYR,NSVP,NWSVP,R12(MXN),RA,
C RHO(MXLYR),RSVP,SURX,SURY,THETA,TRACK(MXTRK,2),U(MXN),
C X(MXN),XKO,Y(MXN),ZA,ZLYR(M4XLYR),ZP,ZS,ZSVP(MXSVP)

* EQUIVALENCE (H, ZLYR(1)), (D, ZS), (ZJ, ZLYR(l))
* DATA PI/3.141592654/,DEG/57.29578/
C

IF(THETA) 50,100,150
C

-I C THETA LESS THAN 0.0. BOTTOM SLOPES UP.
50 CONTINUE

BOTY=U(N)
C BOTX=...............

RETURN
C

:' C THETA - 0.0. BOTTOM IS FLAT.
100 CONTINUE

BOTY = U(N)
CALL UFIELD
BOTX = AlJM

* RETURN
C
C THETA GREATER THAN 0.0, BOTTOM SLOPES DOWN.

S 150 CONTINUE
C BOTY=...............

-~ C BOTX=.............
RETURN
END
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